Boosted-LDA for Biomedical Data Analysis
نویسندگان
چکیده
We propose a novel approach to boosting weighted linear discriminant analysis (LDA) as a weak classifier. Combining Adaboost with LDA allows selecting the most relevant features for classification at each boosting iteration, thus benefiting from feature correlation. The advantages of this approach include the use of a smaller number of weak learners to achieve a low error rate, improved classification performance due to the robustness and stable nature of LDA, and computational efficiency. The performance of the proposed method was evaluated on artificial data and additionally on two popular independent data sets: the Iris Data Set and the Breast Cancer Wisconsin Diagnostic Data Set, both publicly available. Experimental results showed the superior accuracy of the proposed method over LDA and AdaBoost combined with other types of weak classifiers. The weighted LDA algorithm was proven to be equivalent to the traditional LDA in the case of uniform weight distributions.
منابع مشابه
Improving 2D Boosted Classifiers Using Depth LDA Classifier for Robust Face Detection
Face detection plays an important role in Human Robot Interaction. Many of services provided by robots depend on face detection. This paper presents a novel face detection algorithm which uses depth data to improve the efficiency of a boosted classifier on 2D data for reduction of false positive alarms. The proposed method uses two levels of cascade classifiers. The classifiers of the first lev...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملBoosting Discriminant Learners for Gait Recognition Using MPCA Features
This paper proposes a boosted linear discriminant analysis (LDA) solution on features extracted by the multilinear principal component analysis (MPCA) to enhance gait recognition performance. Three dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature sel...
متن کاملHybrid random walk-linear discriminant analysis method for unwrapping quantitative phase microscopy images of biological samples.
Standard algorithms for phase unwrapping often fail for interferometric quantitative phase imaging (QPI) of biological samples due to the variable morphology of these samples and the requirement to image at low light intensities to avoid phototoxicity. We describe a new algorithm combining random walk-based image segmentation with linear discriminant analysis (LDA)-based feature detection, usin...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل